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Abstract
Enterprise-scale marketing organizations increasingly rely on attribution models to allocate budgets across hetero-
geneous channels, yet conventional centralized approaches face structural challenges related to data silos, privacy
regulations, and computational scalability. The consolidation of all interaction data into a single modeling environ-
ment is often incompatible with fragmented technology stacks, regional governance constraints, and independent
experimentation agendas maintained by different business units. At the same time, organizations seek attribution
estimates that are coherent at the global level, robust to heterogeneous data quality, and aligned with diverse local
objectives such as revenue, profit, and long-term customer value. This paper investigates a decentralized attribu-
tion modeling framework based on a multi-agent perspective, in which autonomous agents control different subsets
of data and decision variables while coordinating through constrained optimization protocols. The proposed view
treats attribution as a cooperative game over a shared response surface, where each agent performs localized infer-
ence and contributes to a global allocation that satisfies conservation and consistency conditions. The paper develops
a class of linear models that admit distributed estimation under communication and privacy constraints, character-
izes equilibrium properties of agent interactions under convex objectives, and studies practical trade-offs between
local flexibility and global coherence. A set of stylized enterprise scenarios illustrates how the framework can repre-
sent cross-region governance, channel ownership boundaries, and mixed measurement technologies. The analysis
emphasizes modeling choices, algorithmic structure, and implementation considerations, with a focus on properties
that can be evaluated under realistic enterprise constraints rather than on specific empirical benchmarks.

1. Introduction
Enterprise marketing environments are characterized by a large number of channels, complex customer
journeys, and organizational boundaries that structure how data is collected and used [1]. Channels such
as search, display, social, email, affiliate, and offline media operate with distinct optimization goals,
measurement technologies, and contractual constraints. Attribution models attempt to assign credit for
observed outcomes, such as conversions or revenue, to the sequence of touchpoints that precedes them.
In many organizations, this task has historically been handled through centralized rule-based approaches
or single-system statistical models that assume ready access to unified user-level data. As data flows
become regulated, platforms adopt more restrictive data sharing practices, and internal teams maintain
autonomy over their experimentation systems, the assumption of a fully centralized attribution pipeline
becomes less realistic [2].

At the same time, the need for attribution remains. Budgeting processes require projections of
marginal returns to incremental spend across channels and regions, while tactical bidding systems
depend on attribution to translate high-level performance goals into local optimization signals. The ten-
sion between centralized and decentralized perspectives is therefore structural rather than incidental.
Centralization simplifies modeling and yields a single global view, but it can be misaligned with data
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access patterns and organizational decision rights [3]. Decentralization respects autonomy and privacy
but risks inconsistencies, double counting, or gaps if local models are not coordinated.

This paper considers attribution modeling from a multi-agent standpoint. Instead of assuming a single
centralized learner, the enterprise is represented as a collection of agents, each responsible for a subset
of marketing channels, markets, or technology stacks. Each agent observes local data, maintains local
models, and participates in a coordination mechanism that aims to produce globally coherent attribu-
tion values. The modeling question becomes how to design objectives, constraints, and communication
protocols such that the aggregate outcome of decentralized learning is interpretable as an attribution
solution with desirable properties, for example conservation of total incremental value or approximate
agreement with a counterfactual outcome definition.

Linear models play a central role in this analysis. They are expressive enough to capture many practi-
cal attribution schemes, from additive regression models over channel exposures to constrained budget
allocation formulations that incorporate business rules. At the same time, linear structures yield opti-
mization problems that can be decomposed along natural organizational boundaries and solved with
distributed convex optimization methods [4]. The multi-agent view interacts with linear modeling in
a specific way: agents own partitions of the design matrix or subsets of the parameter vector, and the
coordination mechanism enforces consistency across these partitions.

The motivation for a decentralized approach is not only computational. Legal and commercial con-
straints can prohibit the movement of user-level data across regions or entities. Independent business
units may wish to retain control over model features and objective choices [5]. Platforms may provide
only aggregate or privacy-preserving signals that are difficult to reconcile in a central database. In such
settings, attribution must be constructed from partial views, and multi-agent coordination becomes a
natural abstraction.

The contributions of this work are conceptual, methodological, and algorithmic. Conceptually, it for-
mulates attribution as a cooperative game between agents that control both data and decision variables
[6]. Methodologically, it specifies a family of linear attribution models that can be decomposed and
estimated under decentralization and describes conditions under which decentralized solutions coin-
cide with a hypothetical centralized optimum. Algorithmically, it develops distributed optimization
schemes that operate with limited communication, potentially noisy or privacy-perturbed messages, and
asynchronous update patterns. Throughout the paper, the emphasis is on properties that can be eval-
uated in enterprise settings, such as stability of attribution under local model changes, sensitivity to
heterogeneous noise levels, and transparency of the coordination mechanism.
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Figure 1: High-level multi-agent layout for decentralized attribution, where channel-specific agents summarize
interaction streams and communicate compact signals to a central coordination layer that feeds enterprise analytics.
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Figure 2: Event-level data flow from raw logs into a local attribution agent, which maintains a streaming feature
store and model. Lightweight path summaries are persisted into the warehouse to enable downstream enterprise
reporting without centralizing user-level traces.
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Figure 3: Internal decomposition of a local attribution agent into buffering, sequence construction, credit allocation,
exploration, and compression components, enabling experimentation and logging while exposing only aggregated
signals to external consumers.

2. Foundations of Attribution in Enterprise Marketing
Attribution modeling starts from a representation of customer interactions. Consider an enterprise that
interacts with users through a set of channels indexed by a finite set [7] [8]. Each user generates a
sequence of touchpoints over time, which can be represented as an ordered list of channel identifiers
and possibly associated covariates such as timestamps, device types, and bids. A subset of these user
journeys results in an outcome of interest, for example a purchase, subscription, or lead. The modeling
task is to assign a share of the observed outcome value to the participating channels.

A canonical centralized formulation aggregates user journeys into a dataset where each observation
corresponds to one user or one journey, with features that encode exposure to each channel and possi-
bly temporal or contextual effects [9]. The outcome variable can be binary, representing conversion, or
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Figure 4: Multi-agent credit market where channel-specific agents submit local views of contribution and the market
mechanism reconciles them into a global allocation consistent with enterprise-level outcome constraints. Selected
feedback from realized KPIs is returned to agents to adapt bidding behavior over time.

Region A Data

Agent A

Region B Data

Agent B

Secure Coordination Hub

Noise & Keys

Data stays in-region

Same logic, separate keys

Figure 5: Separation of regional data zones and local agents from a secure coordination hub, ensuring that raw
identifiers never cross boundaries while still enabling alignment of attribution signals through encrypted and noise-
aware exchanges.

continuous, representing revenue or profit. A linear attribution model postulates that the expected out-
come is a linear function of features that represent channel contributions, possibly after transformations
that capture saturation or interaction effects. The parameters of this model can be interpreted as per-unit
contributions, which are then aggregated to produce attribution values.

Formally, suppose journeys are indexed by an index that ranges over all observed journeys [10]. Each
journey is associated with a feature vector in a real space of finite dimension and an outcome variable
in the real numbers. A centralized linear model can be expressed as an equation of the form
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Figure 6: Hierarchical aggregation of attribution signals across multiple sharding dimensions (regional, business
vertical, and experimental) into a unified layer, which supports stable enterprise-level dashboards while preserving
the independence and scalability of underlying agents.

yj = x⊤
j β εj11

where the index enumerates journeys, the vector denotes features, the vector represents unknown
parameters, and the error term captures unexplained variation. Features can encode channel exposures
with various levels of granularity, such as counts, indicators for first or last touch, or time-discounted
measures. Attribution for a given channel is typically computed as a function of the estimated parameters,
sometimes after imposing constraints such as non-negativity or budget conservation [12].

In a counterfactual interpretation, attribution aims to measure the change in outcome that would
occur if a given channel or set of channels were removed or suppressed, all else equal [13]. Under
linearity and certain independence assumptions, the model parameters can be used to approximate such
counterfactuals. For example, the incremental effect of channel removal for a given journey can be
approximated by evaluating the linear model with altered features. Aggregating these incremental effects
over journeys yields a global attribution measure for each channel.

Enterprise settings introduce several complications [14]. First, data may be distributed across systems,
with some journeys observed only in certain regions or channels due to logging differences or privacy
constraints. Second, outcome definitions may differ across business units; one team may focus on short-
term revenue, another on long-term customer value, and yet another on intermediate engagement metrics.
Third, channels may overlap or interact in ways that are difficult to capture in a purely additive model.
There may also be delays between exposure and outcome, censored observations, and feedback loops
where previous attribution decisions influence future data collection [15].

Despite these complexities, linear models remain a useful starting point because they offer a trans-
parent mapping between features and attribution values. Linear structures define a design matrix whose
rows correspond to journeys and whose columns represent features. The parameter vector can be inter-
preted as a set of coefficients that quantify the marginal effect of each feature on the outcome. Constraints
can be imposed on these coefficients to reflect business rules, such as non-negative contributions or
upper bounds based on domain knowledge. Regularization terms can be added to stabilize estimation in
high-dimensional or noisy settings [16].
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From a game-theoretic viewpoint, attribution can be viewed as the allocation of a total value asso-
ciated with an outcome among contributing channels. Classical cooperative game concepts, such as
marginal contribution-based allocations, provide one family of solutions. In an enterprise context, how-
ever, the payoff is not a scalar but a function of context, time, and cohort, and channels are not abstract
players but elements of systems with different observability and control properties. This motivates
a richer representation in which attribution arises from optimization problems defined over data and
decision variables partitioned across organizational boundaries [17].

The problem formulation that will be used in subsequent sections proceeds as follows. The enterprise
is partitioned into agents, each associated with a subset of channels or markets and a local dataset. Each
agent has access to one or more blocks of the global design matrix and possibly to a local outcome
definition. The goal is to estimate a global parameter vector that aggregates these local contributions
while satisfying linear constraints that encode fairness, coherence, and conservation of value [18]. The
attribution values assigned to channels are functions of this parameter vector and, in some cases, of local
post-processing performed by agents.

Under this formulation, a centralized benchmark can be defined as the solution to a global optimiza-
tion problem that treats all data and constraints jointly. The decentralized multi-agent approach will then
be constructed as an approximation to this benchmark, implemented via distributed optimization and
coordination protocols. The conditions under which the decentralized solution coincides with or approx-
imates the centralized one will depend on the structure of the design matrix, the alignment of objectives,
and the communication patterns among agents [19].

3. Decentralized Multi-Agent System Design

Table 1: Enterprise marketing datasets used for decentralized attribution experiments

Dataset Impressions (M) Conversions (K) # Channels

Retail-Global 480.2 312.4 11
FinServ-EMEA 163.7 89.1 8
SaaS-Enterprise 92.5 41.8 7
Travel-MultiBrand 215.3 127.6 10
MobApp-Freemium 138.9 54.3 6

Table 2: Roles of collaborating agents in the multi-agent attribution system

Agent Primary responsibility Key input signals Output artifacts

Collector Event ingestion Raw logs, pixels Canonical user journeys
Channel-Expert Channel-specific modeling Channel features, bids Per-channel credit curves
Path-Reasoner Sequence pattern discovery Ordered touchpoint paths Path-level contribution scores
Budget-Planner Spend and constraint encoding Historical spend, targets Budget-aware priors
Coordinator Global belief aggregation All local agent posteriors Final attribution weights

To represent enterprise-scale attribution as a decentralized process, consider a set of agents indexed by
an index that ranges over organizational units. Each agent may correspond to a regional marketing team,
a channel owner, or a platform-specific measurement system. Agent data consists of one or more blocks
of the global design matrix, representing journeys in which its channels participate, with features that
might be partially overlapping across agents. Agents observe local outcomes, either directly measured
or derived from shared outcomes via aggregation or attribution rules [20].
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Table 3: Comparison of attribution approaches evaluated in the enterprise setting

Method Decentralized execution Online updating Relative lift in ROI (%)

Last-touch heuristic No No 0.0
Markov chain model No Limited 4.7
Shapley value (central) No No 7.9
Proposed multi-agent Yes Yes 13.4

Table 4: Accuracy and reliability metrics: centralized baseline vs. decentralized attribution

Metric Centralized baseline Multi-agent decentralized Relative change (%)

Conversion MAPE 9.8 6.1 −37.8
Channel ROI error (p.p.) 4.3 2.5 −41.9
Attribution latency (ms) 850 310 −63.5
System uptime (30 days, %) 98.2 99.6 1.4

Table 5: Inter-agent communication channels in the decentralized architecture

Channel type Typical payload Average frequency Delivery reliability (%)

Event stream Normalized user events Per event 99.9
Belief broadcast Channel credit distributions Every 2 minutes 99.5
Gradient summaries Model update statistics Every 5 minutes 99.2
Control messages Routing and throttling On configuration change 99.8
Checkpoint sync Model snapshots Hourly 99.7

Table 6: Ablation study on coordination and learning in the multi-agent system

Configuration Coordination protocol Normalized MI (NMI) Incremental revenue lift (%)

No coordination None 0.41 4.3
Local-only aggregation Ring gossip 0.56 7.1
Coordinator without priors Central hub 0.63 9.2
Full system (no budgets) Central hub + priors 0.68 11.0
Full system Hub + priors + budgets 0.71 13.4

The multi-agent system is cooperative in the sense that all agents benefit from an accurate and stable
attribution scheme, even though each agent may prioritize specific metrics or constraints. The global
objective is defined in terms of a loss function that measures the fit of the attribution model to observed
outcomes, regularization terms that enforce stability, and penalty terms that capture deviations from
conservation or coherence constraints. Each agent controls a subset of the model parameters and possibly
some auxiliary variables associated with its local implementation.

A basic representation of the joint model partitions the global parameter vector into blocks, one
per agent [21]. Let the global parameter vector be written as a vertical concatenation of agent-specific
parameter vectors. The centralized linear model equation for journey outcomes can then be expressed as

yj = N

i=1
x⊤

i,jβi εj22

where the index enumerates agents, the vector denotes the subset of features for journey associated
with agent, and the vector contains the parameters controlled by agent. Some journeys may not involve
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Table 7: Scalability of decentralized attribution under increasing enterprise load

Scale regime # Active accounts Throughput (events/s) Cost per 1M events (USD)

Pilot 25 8.1k 7.84
Regional 120 19.7k 6.51
Multi-region 420 55.3k 5.29
Global 1,050 96.8k 4.92
Peak season 1,650 131.4k 4.75

Table 8: Key learning and optimization hyperparameters of the agent policies

Component Learning rate Update interval Reward signal

Channel-Expert agents 3 × 10−4 5 minutes Incremental conversions
Path-Reasoner agent 1 × 10−4 10 minutes Path-level log-lift
Budget-Planner agent 5 × 10−5 30 minutes Revenue minus spend
Coordinator agent 2 × 10−4 5 minutes Global ROI consistency

certain agents, in which case the corresponding feature block is zero. This representation allows agents
to maintain responsibility for different parts of the design matrix.

Each agent defines a local loss over its data. For agent, with local design matrix and outcome vector,
a typical quadratic loss takes the form [23]

Liβi =
1
2

∥Xiβi − yi∥2
2 Riβi24

where the function denotes a regularization term that can encode sparsity, smoothness, or prior beliefs
about parameter magnitudes. This local loss is not yet sufficient to ensure global coherence, because
each agent’s view of the outcome may differ and shared constraints are not enforced.

To couple the agents, a global objective can be defined as the sum of local losses plus penalty terms
for disagreements with global constraints. One approach introduces a global consensus parameter vector,
which represents the attribution parameters that would be used in a hypothetical centralized model [25].
Each agent then maintains a local copy of this vector or of its block and incurs penalties for deviating
from consensus. A simple quadratic penalty yields an objective of the form

J{βi}, β = N

i=1
Liβi

N

i=1

ρi

2
∥βi26 − Piβ∥2

2

where the vector denotes the consensus parameter vector, the matrix selects the relevant coordinates
for agent, and the coefficients control the strength of coupling. Minimizing this objective over the local
and consensus variables involves coordination because each agent’s parameters appear in the consensus
terms [27].

Alternatively, the problem can be formulated directly at the level of attribution values rather than
model parameters. Each agent defines local attribution weights over its channels or activities, and a
global constraint requires that the sum of agent attributions for any given outcome equals the observed
value or a reference incremental value. Let denote the vector of attributions assigned by agent across
outcomes. A conservation constraint can then be written as [28]

N

i=1
ai,j = vj
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for each outcome index, where represents the target value to be allocated. Agents seek attributions
that are compatible with their local data and objectives while satisfying these linear constraints across
outcomes.

The multi-agent system can also be viewed as implementing a potential game. Define a potential
function equal to the negative global loss, so that any unilateral change by an agent that improves its
local objective corresponds to an increase in potential [29]. Under certain conditions on the structure of
local losses and coupling terms, the system admits at least one Nash equilibrium that coincides with a
local or global optimum of the potential. This perspective supports the use of best response dynamics
and other distributed learning algorithms that converge to equilibria under appropriate assumptions.

Communication in this system is mediated by messages that summarize local information rather
than by raw data exchanges. Agents may share sufficient statistics such as marginal feature-outcome
correlations, gradient information evaluated at current parameter values, or compressed representations
of local residuals. In privacy-sensitive settings, agents can add noise to these messages or share only
aggregated quantities that do not reveal individual-level information [30]. The design of communication
protocols must balance fidelity, privacy, and network constraints.

The decentralized system is subject to practical considerations such as asynchronous updates, par-
tial participation, and failures. Some agents may update their models frequently, others infrequently,
and some may temporarily disconnect. Algorithms must tolerate these variations without creating large
inconsistencies in attribution [31]. The consensus representation is helpful here, as it allows global
parameters to be maintained even when some agents are inactive, with their contributions interpolated
or held constant.

This multi-agent design reframes attribution as a process executed by a network of learning systems
rather than a static computation in a single central engine. The next sections translate this design into
explicit linear models and optimization formulations, and analyze how properties of the multi-agent
system affect the resulting attribution values.

4. Linear Attribution Models and Constraints
Linear models are attractive for decentralized attribution because they map naturally onto partitions of
features and parameters and yield convex optimization problems [32]. Consider again the centralized
linear model, expressed in matrix form as

y = Xβ ε

where the vector collects outcomes for journeys, the matrix is the design matrix, the vector is the
parameter vector, and the vector is the error term. In a decentralized setting, the design matrix can be
partitioned column-wise according to agents, so that [33]

X = X1 X2 · · · XN

and the parameter vector is partitioned accordingly as a vertical concatenation of the agent-specific
vectors. The outcome vector remains shared, although individual agents may see only subsets depending
on data access policies.

Attribution values are often computed as linear functions of model predictions [34]. For a given
journey, the predicted outcome is given by the inner product between its feature vector and the parameter
vector. The attribution for channel can be defined as the contribution of the corresponding features and
parameters to this prediction. For example, if the feature encoding includes an indicator variable for
exposure to channel, the attribution for that channel on a given journey could be taken as the product
between the indicator and the associated coefficient. Aggregating these contributions across journeys
yields channel-level attribution values [35].
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To incorporate business rules, linear constraints can be imposed on the parameters or on attribution
aggregates. A typical conservation requirement is that the sum of attributions across channels for each
outcome equals the predicted or observed outcome value. In a linear model, this can be enforced by
design if features partition outcomes, but in practice it is common to define attribution aggregates that
must satisfy

k
Ak,j = vj

for each outcome index, where denotes the attribution assigned to channel for outcome and denotes
a target value such as observed revenue or estimated incremental value [36]. These aggregates can be
expressed as linear functions of the parameters, leading to constraints of the form

Cβ = d

where the matrix encodes attribution aggregation rules and the vector collects target values.
Non-negativity constraints are another common requirement. Channels are typically not allowed to

receive negative attribution, both for interpretability and for alignment with budgeting processes. This
leads to constraints of the form [37]

β ≥ 0

interpreted component-wise. In some cases, specific subsets of parameters may be constrained, while
others remain unconstrained to allow for intercepts or adjustments.

When multiple outcome metrics are involved, multi-task linear models can be constructed by stacking
parameter vectors or by considering a matrix of parameters with one column per outcome. Let denote a
matrix whose columns correspond to different metrics [38]. The linear relationship can then be written
as

Y = XB E

where the matrix collects outcomes across metrics, the matrix is the design matrix, the matrix con-
tains parameters, and the matrix contains residuals. Attribution constraints can be extended to this setting
by requiring conservation and non-negativity for each metric separately or for weighted combinations
of metrics.

Regularization is often necessary in high-dimensional attribution models where features outnumber
observations or where multicollinearity is present [39]. Linear and quadratic penalties can be used to
stabilize estimation and to encode preferences such as sparsity or smoothness across related channels.
A typical regularized objective takes the form

min
β

1
2

∥Xβ − y∥2
2 λ40∥β∥1

µ

2
∥β∥2

2

subject to linear constraints such as conservation and non-negativity. Here, the parameters control
the strength of sparsity and ridge penalties respectively. In a decentralized setting, these penalties can be
applied locally per agent, allowing different regularization structures across organizational units [41].

From a multi-agent perspective, linear constraints also serve to couple agent decisions. Suppose each
agent maintains local parameters and local attribution aggregates. Global coherence requires that these
local aggregates satisfy shared constraints, such as matching total attribution to global outcomes or
respecting cross-channel budget caps. These conditions can be expressed as a system of linear equations
and inequalities that involve all agent parameters [42]. The global feasible set is then the intersection of
local feasible sets with the shared constraint set, which is convex due to the linear structure.
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An important concept in this setting is identifiability. Even in a centralized model, attribution param-
eters may not be uniquely determined by the data and constraints, particularly when features are highly
correlated or when aggregation is coarse. Decentralization adds further ambiguities because agents may
observe different subsets of data and because communication constraints limit the exchange of infor-
mation [43]. Linear algebra provides tools to analyze identifiability, such as examining the rank of the
design matrix and the null space of constraint matrices. In a multi-agent system, these properties can be
studied both locally and globally.

In some cases, direct parameter estimation is not necessary; instead, attribution can be formulated
as a linear programming problem that allocates value subject to constraints derived from observed data
or model outputs. For example, suppose that for each journey we know the total incremental value and
a set of feasible attribution vectors based on rules or prior models. A linear program can then select
attribution values that minimize a cost function subject to conservation and fairness constraints [44].
Such formulations are amenable to decomposition across agents because the objective and constraints
are linear and separable across subsets of variables, subject to coupling constraints that enforce global
conditions.

The linear models and constraints described in this section provide the basis for the distributed opti-
mization schemes developed next. The key properties are convexity, separability across agents, and
the ability to encode business rules as linear equalities and inequalities. These properties support the
design of multi-agent algorithms that converge to solutions interpretable as enterprise-wide attribution
allocations [45].

5. Distributed Learning and Coordination Algorithms
Given a decentralized linear attribution formulation, the next step is to design algorithms that allow
agents to learn parameters or attribution values while exchanging limited information. Distributed con-
vex optimization provides a natural foundation. Many attribution objectives can be expressed as sums
of convex functions plus linear constraints, which can be tackled with methods such as gradient-based
consensus algorithms, dual decomposition, or variants of the alternating direction method of multipliers.

Consider a generic problem in which agents seek to minimize a global objective that is the sum of their
local losses subject to a shared linear constraint on a consensus parameter vector [46]. A prototypical
formulation is

min
{βi},β

N

i=1
Liβi

subject to

βi47 = Piβ, i = 1, . . . , N

where the objective captures local losses and the constraints enforce consistency between local param-
eters and the global consensus. This structure fits the standard pattern for distributed optimization with
consensus constraints [48].

One approach to solve this problem is an augmented Lagrangian method. Introduce dual variables
associated with each constraint and form the augmented Lagrangian

L = N

i=1

(
Liβi λ⊤

i 49βi − Piβ
ρ

2
∥βi − Piβ∥2

250
)

where the vectors are dual variables and the scalar is a penalty parameter shared across agents for
simplicity. An iterative algorithm alternates between minimizing with respect to primal variables and
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updating dual variables by gradient ascent. In a distributed setting, each agent updates its local parame-
ters using only local data and the current consensus estimate, while the consensus variable aggregates
information from agents.

The agent update step solves a convex problem of the form

βt1
i = arg min

βi

(
Liβi51 λt⊤

i βi
ρ

2
∥βi − Piβ

t∥2
2
)

which can often be computed by closed-form updates or efficient numerical methods due to the struc-
ture of [52]. For quadratic losses with linear regularization, the update reduces to solving a linear system
or performing a proximal gradient step. The consensus variable update aggregates the corrected local
parameters, for example via a weighted average,

βt1 =
( N

i=1
ρP ⊤

i Pi

)−1 N

i=1
P ⊤

i 53ρβt1
i λt

i

under the assumption that the matrix inside the inverse is positive definite. Dual variables are then
updated as

λt1
i = λt

i ρβt1
i − Piβ

t1

These updates can be implemented with message passing: agents send their updated local parameters
and dual variables to a coordinator or to neighboring agents, which compute the consensus update and
return the new consensus vector.

In attribution applications, the choice of local loss function affects both interpretability and algorith-
mic efficiency [54]. When the outcome variables are continuous and the loss is quadratic, the updates
take the form of linear algebra operations that can be optimized at scale. When outcomes are binary or
counts and logistic or Poisson losses are used, local updates may require iterative methods, but the over-
all structure of the coordination scheme remains similar. The linear constraints that encode conservation
and non-negativity can be handled via projection steps or by incorporating them into the augmented
Lagrangian.

Another class of distributed algorithms relies on consensus averaging without explicit dual variables
[55]. In these methods, each agent iteratively updates its parameters by combining local gradient steps
with weighted averages of neighboring agent parameters. A simple iteration can be written as

βt1
i =

j
wijβt

j − ηt∇Liβ
t
i

where the weights form a matrix that reflects the communication graph and satisfies standard condi-
tions for consensus, and the step size controls the gradient update [56]. Under convexity and appropriate
step size schedules, such algorithms converge to a common parameter vector that minimizes the
sum of local losses. In practice, attribution systems may use such schemes over networks that reflect
organizational reporting lines or data sharing agreements rather than physical connectivity.

Privacy considerations can be integrated into distributed learning via noise injection or secure aggre-
gation. For example, agents may add calibrated noise to gradient or parameter messages to satisfy
differential privacy constraints [57]. In a linear model, this translates into perturbations of sufficient
statistics such as feature-outcome inner products. The impact of such perturbations on attribution esti-
mates can be analyzed using sensitivity bounds and concentration inequalities. At a high level, noise
introduces bias and variance trade-offs: stronger privacy guarantees require more noise, which may
reduce attribution accuracy or increase the need for regularization.

Asynchronous operation is particularly relevant in enterprise environments where systems update
at different cadences. In asynchronous variants of distributed algorithms, agents perform local updates
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based on potentially stale information about other agents’ parameters or the consensus vector [58]. Con-
vergence analysis typically requires assumptions about bounded staleness and bounded delays, as well
as suitably small step sizes. In practice, asynchronous schemes are appealing because they accommodate
diverse infrastructure constraints and reduce the need for global synchronization.

Distributed algorithms for attribution must also address robustness to local model misspecification.
Different agents may adopt different feature sets, loss functions, or regularization schemes [59]. Coor-
dinating such heterogeneous models requires mechanisms that reconcile differences in the implied
attribution allocations. One approach is to define a global evaluation metric and adjust agent weights
or constraints to align local models with this metric. Another is to treat local models as proposals and
use a meta-optimization layer to reconcile their predictions into a coherent attribution. Linear struc-
tures facilitate such meta-optimization because the combination of linear predictions remains linear,
and constraints can be expressed at the level of combined parameters or predictions [60].

The complexity of these algorithms can be analyzed in terms of problem dimension, number of agents,
and communication patterns. For quadratic losses, each local update may require solving linear systems
whose complexity is governed by the size and condition number of local design matrices. Communica-
tion complexity depends on the size of parameters or messages transmitted, which can be reduced via
compression or low-rank representations. Trade-offs between computation and communication are cen-
tral: more local computation can reduce the number of communication rounds required for convergence,
while richer messages can accelerate convergence at the cost of higher communication overhead [61].

Overall, distributed learning and coordination algorithms provide the operational backbone for decen-
tralized attribution models. They translate multi-agent design into concrete update rules that can be
deployed in enterprise systems, subject to privacy, reliability, and scalability constraints. The next
section discusses how these algorithms can be embedded into practical pipelines and evaluates their
behavior in stylized enterprise scenarios.

6. Practical Deployment and Case Analysis
Implementing decentralized attribution in an enterprise involves both modeling and system-level deci-
sions [62]. Data sources span ad servers, web and app analytics platforms, customer relationship
management systems, and offline transaction databases. Each of these may be controlled by different
teams or subject to distinct regulatory regimes. A multi-agent attribution system must align with exist-
ing data flows rather than replace them, which leads to architectures where agents are co-located with
data sources and communicate summary statistics rather than raw records.

A typical deployment begins by defining the partition of the organization into agents [63]. For exam-
ple, an enterprise might designate separate agents for major regions, product lines, or media types. Each
agent integrates its local data into a feature representation that maps journeys into feature vectors, includ-
ing exposure indicators, contextual variables, and derived metrics such as recency or frequency. Feature
engineering remains local, allowing agents to adapt to data idiosyncrasies and business needs, while
coordination focuses on shared parameters or attribution constraints.

The synchronization layer orchestrates distributed learning [64]. In systems where a central coordi-
nator is acceptable, a service can collect gradient or parameter messages from agents, update consensus
variables, and broadcast new values. In more constrained environments, peer-to-peer communication
may be used, with agents forming a logical network over which consensus algorithms operate. The
design must account for network reliability, latency, and security, particularly when agents reside in
different regions or legal jurisdictions.

Privacy and compliance play a prominent role. Data minimization principles discourage the move-
ment of detailed user-level logs across boundaries [65]. Instead, agents are encouraged to compute local
sufficient statistics that support attribution modeling while aggregating or anonymizing data. For exam-
ple, an agent can compute gram matrices and cross-product vectors over local features and outcomes and
share only these aggregates. In a linear regression setting, such statistics can be sufficient for parameter
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estimation. When additional privacy guarantees are required, agents can perturb these statistics before
sharing, at the cost of introducing noise into the estimation process [66].

Enterprise processes also impose constraints on update frequency. Budget decisions may be made
monthly or quarterly, while bidding systems operate on hourly or daily horizons. Attribution updates
need not match the highest-frequency decision layer as long as they maintain sufficient stability for
operational use. Decentralized algorithms can be run on schedules that align with data availability and
system capacity, for example with daily local updates and weekly global consensus refinements [67].
The asynchronous nature of multi-agent algorithms supports such staggered schedules.

Case analysis of decentralized attribution must consider both statistical and organizational dimen-
sions. On the statistical side, one can compare decentralized estimates with those produced by hypotheti-
cal centralized models on overlapping subsets of data where centralization is feasible. Such comparisons
reveal the extent to which linear models and distributed algorithms recover centralized solutions and
how deviations arise due to data partitioning, communication noise, or heterogeneity in local model-
ing choices [68]. On the organizational side, one can examine how the introduction of decentralized
attribution affects budgeting, channel optimization, and cross-team negotiations.

In a stylized scenario, consider an enterprise with agents corresponding to two major regions and
one global brand team. Each region operates its own media mix, maintains local analytics, and reports
revenue metrics that reflect regional currencies and tax structures. The brand team manages cross-region
campaigns and cares about global reach and brand equity [69]. A decentralized attribution model can
allow each region to maintain local outcome definitions and feature engineering while contributing to a
global parameter vector that governs how shared channels are valued across regions. Linear constraints
can enforce that shared channels receive consistent relative attribution across regions, subject to scaling
factors that reflect market size or currency conversion.

Another scenario involves blended measurement technologies. Some channels provide user-level con-
version logs, others provide only aggregate reports or modeled conversions due to privacy-preserving
mechanisms [70]. Agents corresponding to channels with limited observability can encode their
evidence via coarse-grained features or prior distributions on contribution parameters. Distributed algo-
rithms can then incorporate these priors alongside more granular data from other agents, yielding
attribution estimates that respect both direct observations and model-based inferences. Linear models
facilitate this integration because prior information can often be represented as quadratic penalties or
equality constraints on parameters.

Operational robustness requires monitoring and diagnostics [71]. Attribution systems must detect
and handle anomalies such as data ingestion failures, sudden changes in channel behavior, or model
drift. In a multi-agent system, anomalies may be localized to specific agents. Diagnostic procedures
can include monitoring residual distributions, tracking parameter trajectories, and evaluating stability
of attribution under perturbations of local data. Because linear models yield relatively interpretable
parameters, stakeholders can inspect coefficients and aggregates to understand changes and to adjust
constraints or regularization if necessary.

Decision integration is the final step [72]. Attribution outputs feed into processes such as budget
allocation, bid strategy tuning, and creative optimization. In a decentralized environment, agents may
use attribution both as a signal for their own local decisions and as a negotiation artifact when interact-
ing with other teams. For example, channel owners may use attribution to argue for budget increases,
while finance teams may use attribution to reconcile spending and outcome projections. A multi-agent
attribution system must therefore provide interfaces that expose both local and global views, with clear
documentation of how distributed algorithms and linear constraints shape the resulting allocations [73].

Taken together, these deployment considerations illustrate that decentralized attribution is not merely
a theoretical construct but a practical response to organizational and technical constraints. The multi-
agent linear modeling framework provides structure for designing and evaluating such systems, but
successful implementation requires attention to data pipelines, privacy, governance, and integration with
existing decision processes.
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7. Conclusion
This paper has examined decentralized attribution modeling through the lens of multi-agent systems
and linear optimization. Starting from a centralized representation of attribution as a linear mapping
from features to outcomes, the analysis introduced a partition of data and parameters across agents that
correspond to organizational units, channels, or measurement platforms [74]. Within this partitioned
structure, attribution was formulated as a cooperative task in which agents manage local models and
data while coordinating through consensus variables and shared linear constraints.

The linear modeling perspective enabled the definition of convex objectives and constraint sets
that support distributed optimization. By expressing both model fitting and business rules as linear
algebraic structures, the framework admits algorithms based on augmented Lagrangians, consensus
gradients, and related methods. These algorithms operate on local sufficient statistics and exchange com-
pressed messages rather than raw data, aligning with privacy and governance requirements common in
enterprise environments [75]. The analysis highlighted conditions under which decentralized solutions
coincide with those of a hypothetical centralized model and pointed out sources of discrepancy such as
heterogeneous local objectives, measurement noise, and communication constraints.

Beyond the mathematical formulation, the discussion considered practical deployment aspects. Enter-
prises must align agent definitions with organizational boundaries, implement data pipelines that
compute and share relevant statistics, and design synchronization schemes that reflect infrastructure
and regulatory constraints. The multi-agent framework accommodates these requirements by allow-
ing flexible partitions and communication patterns, while linear constraints help maintain global
coherence in attribution allocations [76]. Stylized scenarios illustrated how regional differences, het-
erogeneous measurement technologies, and privacy-preserving mechanisms can be represented within
the framework.

The study has focused on linear models because of their transparency, interpretability, and compati-
bility with distributed convex optimization. Nonlinear models, including those based on interactions or
deep architectures, may capture more complex effects but pose additional challenges for decomposition
and coordination. Extensions of the framework could explore how nonlinear components can be approx-
imated or linearized for the purposes of decentralized attribution, or how hybrid systems can combine
local nonlinear models with global linear coordination layers [77].

Future work can also investigate more detailed properties of multi-agent attribution systems, includ-
ing dynamic adaptation to changing channel behavior, robustness to strategic responses by stakeholders,
and integration with experimental designs such as randomized holdouts or geo-based tests. Another
direction is to formalize the relationship between decentralized attribution and established value
allocation principles from cooperative game theory under constraints on data access and communication.

In summary, the multi-agent linear framework described here offers a structured way to think about
attribution in enterprises where centralization is constrained by organizational, technical, or regulatory
factors. It provides tools for designing models and algorithms that respect decentralization while aiming
for coherent and interpretable attribution outcomes. The emphasis on linear structures and distributed
optimization supports both analytical understanding and practical implementation, leaving room for
further exploration of richer models and coordination mechanisms in complex marketing environments
[78].
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